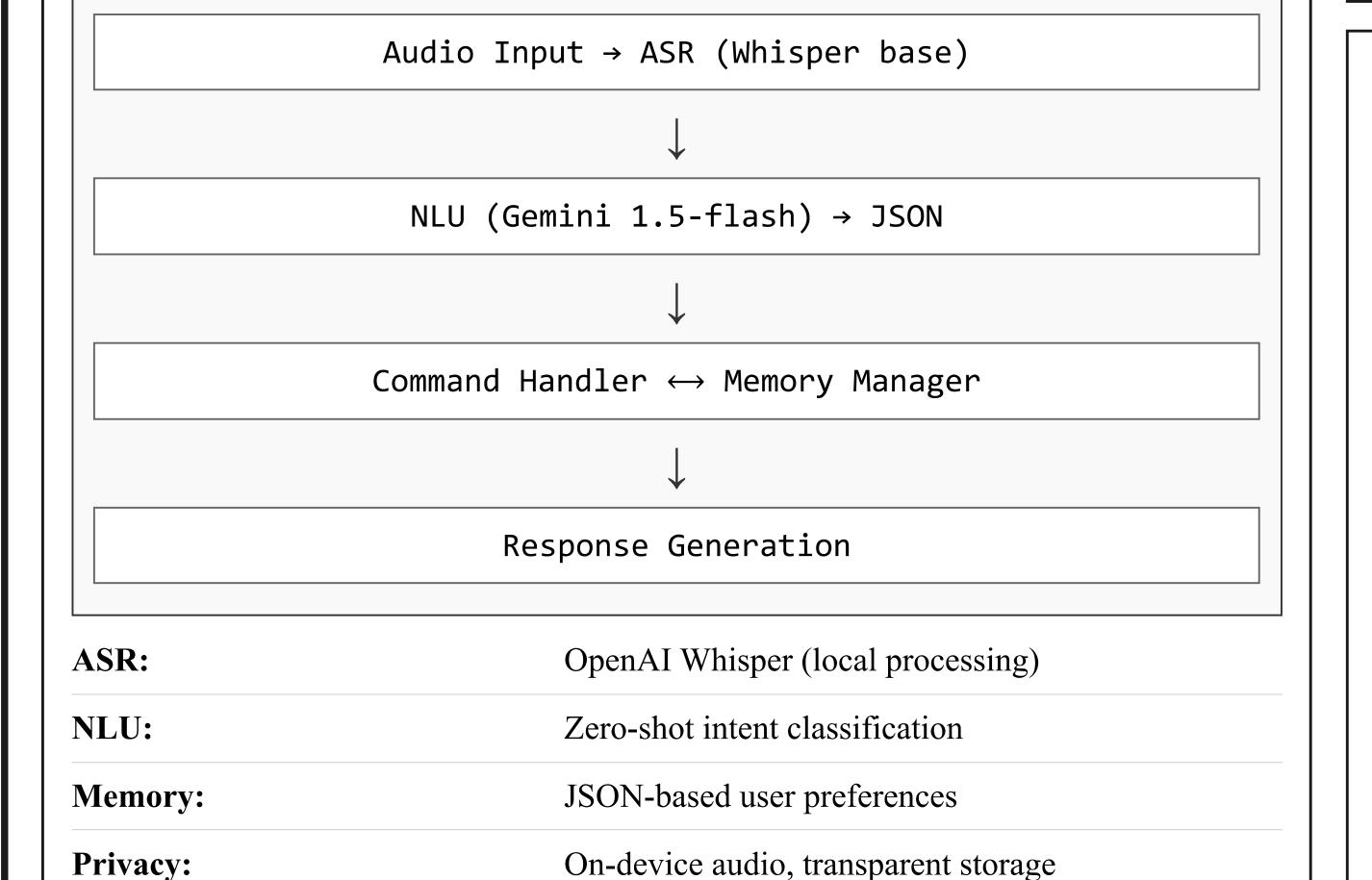
Retention-Augmented Voice Assistant: A Lightweight Architecture for Stateful Interaction with Comprehensive Evaluation and Privacy-Preserving Design

AbdElKader Seif El Islem RAHMANI^{1,2}, Yasser YAHIAOUI^{1,2}, Abdelghani BOUZIANE^{1,2}

¹University Center of Naama Salhi Ahmed, Naama, 45000, Algeria | ²EEDIS Laboratory, University Djillali Liabès of Sidi Bel Abbès, 22000, Algeria

ABSTRACT

Current voice assistants suffer from a fundamental architectural limitation: **stateless design**. Each interaction is treated as an isolated event, precluding meaningful personalization. We present a **retention-augmented architecture** that addresses this through explicit, transparent memory mechanisms. Our system achieves 88% **Personalization Success Rate (PSR)** versus 0% for stateless baselines across 150 controlled test scenarios (p < 0.001).


PROBLEM STATEMENT

- Stateless Architecture: Commercial VAs treat each turn as independent, requiring users to repeatedly specify preferences
- High Interaction Friction: Users must re-state context in every session
- No Long-term Adaptation: Systems cannot learn user patterns over time
- Privacy Concerns: Neural memory approaches lack transparency and user control

KEY CONTRIBUTIONS

- 1. Novel explicit memory architecture for stateful dialogue
- 2. Personalization Success Rate (PSR) evaluation metric
- 3. Privacy-preserving design with on-device ASR
- **4.** Rigorous empirical validation (n=150 scenarios)
- 5. Replicable blueprint for future research

ARCHITECTURE

MEMORY MECHANISM

Core Innovation: Gap-filling via explicit preference storage

Memory Schema:

- User preferences (key-value pairs)
- Interaction history (timestamped actions)
- Context information (session data)

METHODOLOGY

Evaluation Metric: Personalization Success Rate (PSR)

 $PSR = (N_{resolved} / N_{total}) \times 100\%$

Definition: Percentage of ambiguous queries successfully resolved using stored preferences without requiring user clarification.

Test Dataset:

Total scenarios: 150 controlled cases

Categories: 5 (cuisine, location, price, multi-preference, override)

Design: Exceeds NLU context window

Conditions: Retention-augmented vs. stateless baseline

DIALOGUE COMPARISON

Stateless System (X)
User: "Find me a restaurant"

VA: "What cuisine?"
User: "Italian"

VA: "What location?"

Turns: 4+

Memory-Augmented (√)
User: "Find me a restaurant"

VA: "Based on your preference for Italian food and downtown location, here are options..."

Turns: 1

Figure 1: Comparative dialogue efficiency

EXPERIMENTAL RESULTS

Primary Outcome: PSR Analysis

System	Resolved	PSR (%)	95% CI
Stateless	0/150	0.0	[0.0, 2.4]
Retention	132/150	88.0	[82.1, 92.5]

p < 0.001 (Fisher's exact test)

2.31×

Interaction Efficiency Ratio

1.8s

Avg. Latency

QUALITY METRICS

Human Evaluation (n=3 evaluators, 5-point Likert scale)

Dimension	Stateless	Augmented	Δ
Helpfulness	2.3±0.8	4.1±0.6	+1.8
Personalization	1.2±0.4	4.3±0.5	+3.1
Satisfaction	2.1±0.8	4.0±0.6	+1.9

ERROR ANALYSIS

18 Failures (12%) - Root Cause Distribution:

Error Type	Count	%
NLU Entity Extraction	6	33.3
ASR Transcription	4	22.2
Memory Logic	3	16.7
Intent Classification	2	11.1
Other	3	16.7

Memory retrieval overhead: 3.2 ms average (negligible)

CONCLUSIONS

- Validated hypothesis: Lightweight explicit memory achieves significant personalization gains
- Privacy-first design: On-device ASR + transparent storage
- Practical architecture: Low computational overhead, interpretable
- Foundation established: Blueprint for advanced stateful systems

Future Work:

- Implicit preference learning from interaction patterns
- Scalable storage (SQLite/vector DB)
- Longitudinal user studies (n>30, multi-week)
- Context-aware memory retrieval

