

Enhancing Sinhala Text-to-Speech with End-to-End VITS Architecture

Sasangi Nayanathara, Inuri Harischandra, Thamira Weerakoon, Randil Pushpananda

University of Colombo School of Computing, Colombo, Sri Lanka

kksnayanathara@gmail.com, harischandra.inuri@gmail.com, thamiraweerakoon@gmail.com, rpn@ucsc.cmb.ac.lk

Introduction

Sinhala, spoken by millions in Sri Lanka, remains underexplored in **TTS** research, with existing systems producing robotic and less intelligible speech. We present the first Sinhala TTS system based on **VITS**, an end-to-end architecture with a Sinhala-specific text preprocessing pipeline and single-speaker and multi-speaker training. Experiments demonstrate state-of-the-art naturalness and intelligibility, establishing a benchmark that significantly surpasses previous Sinhala TTS approaches.

Methodology

★ Dataset – Pathnirvana Sinhala TTS

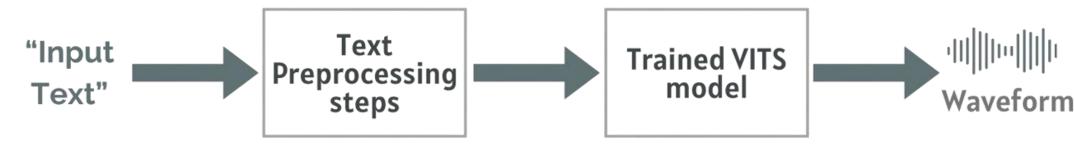

- Sources: Buddhist discourses & educational material
- Format: WAV, 22.05 kHz, 16-bit PCM
- Splits: Male-only, Female-only, Multi-speaker
- Link: https://github.com/pnfo/sinhala-tts-dataset

Table 1 - Dataset composition for Sinhala TTS training

Dataset	Speaker Name	Audio Duration	Clip Count
Male-only	Ven. Mettananda	11.8 h	5400
Female-only	Mrs. Oshadi	9h	4285
Multi-speaker	Both	20.8 h	9685

★ Model – VITS

- Fully End-to-end (text → waveform) generation
- Combines text processing, acoustic modeling, and vocoder
- Robust for low-resource languages

Proposed TTS Process Pipeline

★ Text Preprocessing.

Table 2 – Text Preprocessing techniques applied before

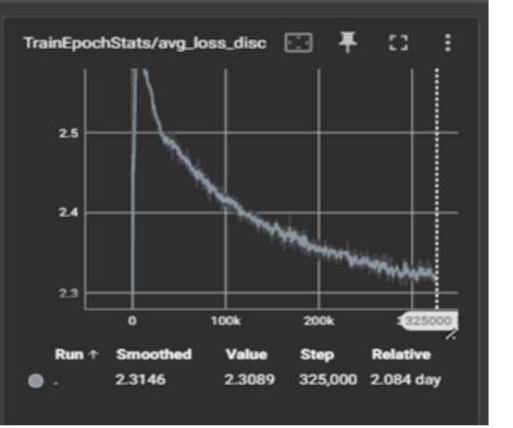
	synthesis		
Technique	What It Handles	Example	
Abbreviation Expansion	Converts Sinhala abbreviations to spoken form	පෙ.ව. → පෙරවරු English: a.m. → ante meridiem (before noon)	
Currency Handling	Detects currency symbols (෮෭., \$, £) and expands to spoken form	රු.150.50 \rightarrow රුපියල් එකසිය පනහයි සත පනහ English: Rs.150.50 \rightarrow One hundred and fifty rupees and fifty cents	
Decimal Point Handling	Replaces numeric periods with දශම (decimal) in speech	12.5 ightarrow දොළහයි දශම පහ English: $12.5 ightarrow Twelve point five$	
Number Expansion	Breaks down and expands large numbers into natural spoken Sinhala	123456 → එකසිය විසි තුන් දහස් හාරසිය පනස් හය English: 123456 → One hundred twenty-three thousand four hundred fifty-six	

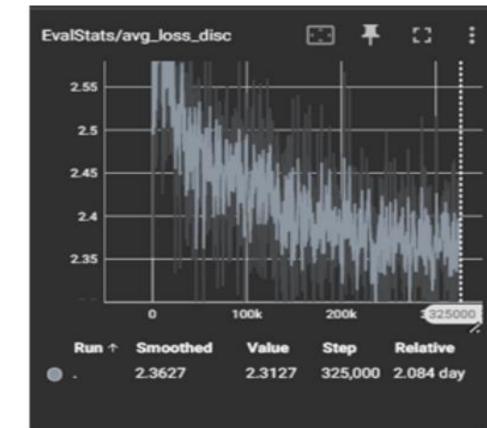
Experiments

★ Training Setup

- Hardware: 4× NVIDIA RTX 2080 Ti, 128 GB RAM
- Batch: 16 (train), 32 (eval); Max audio: 15 sec
- Mixed precision (fp16)
- Logging: Every 50 steps
- Checkpoints: Every 600 steps

★ Configurations

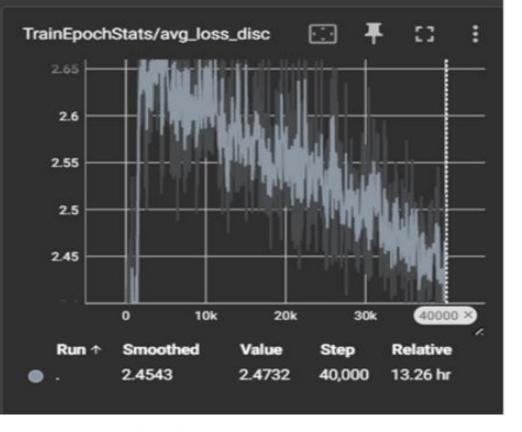

- Single-speaker Male
- Single-speaker Female
- Multi-speaker (Male + Female)

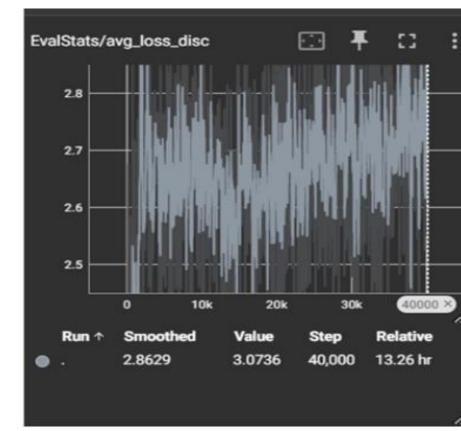

Table 3 - Training configurations and key observations

Model Configuration	Speaker (s)	Dataset	Epochs	Example
Single-Speaker Male	Male	Male- only	1,000	Stable convergence, strong intelligibility
Single-Speaker Female	Female	Female- only	4,000	Needs more data, fluctuations in loss, acceptable quality
Multi-Speaker	Male + Female	Multi- speaker	1,000	Best generalization, smooth training, supports multiple voices

★ Monitoring

- Training & validation loss curves
- Duration prediction & adversarial loss tracking
- All metrics monitored using TensorBoard

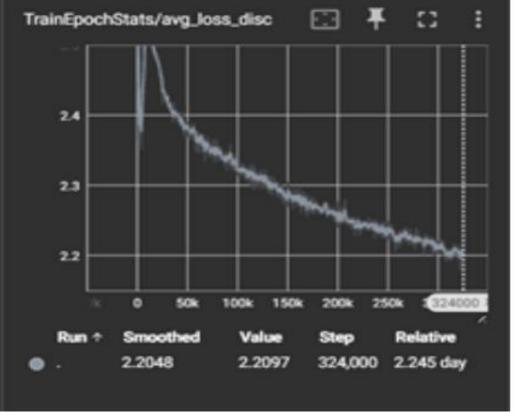


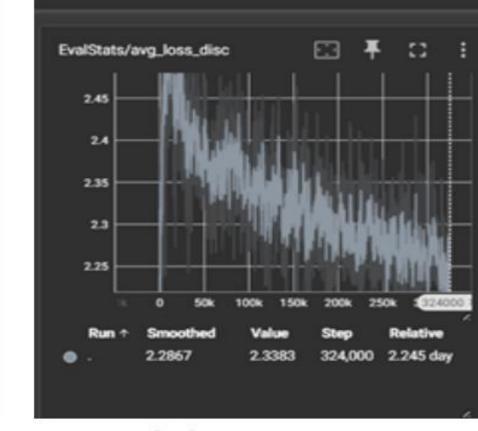


Training Loss

Validation Loss

Single-Speaker Male - Training and validation loss curves





Training Loss

Validation Loss

Single-Speaker Female - Training and validation loss curves

Training Loss

Validation Loss

Multi-Speaker - Training and validation loss curves

Results

★ Subjective Evaluation

- Mean Opinion Score (MOS)
- √ 5-point Likert scale,
- √ 12 native speakers (6M, 6F),
- √ 15 Sinhala sentences (short/medium/long).

- Semantically Unpredictable Sentences (SUS)
- √ 10 sentences per listener
- ✓ word accuracy used to measure intelligibility.

★ Objective Evaluation

- Mel Cepstral Distortion (MCD)
- ✓ Computed between generated and reference audio features
- ✓ Measures spectral similarity → lower = better

Table 4 – Subjective & Objective Evaluation Results

Model	MOS (%)		SUS(%)	MCD
Configuration	Intelligibility	Naturalness	303(%)	(dB)
Single-Speaker Male	92.33	83.54	85.83	13.27
Single-Speaker Female	71.71	74.50	77.50	20.56
Multi-Speaker Male	81.33	79.56	82.50	14.07
Multi-Speaker Female	84.78	81.44	81.39	20.29

Single-speaker male achieved the best, intelligibility, while multi-speaker models improved generalization and female voice quality.

Table 5 - Comparison with Prior Sinhala TTS

Sinhala TTS System	MOS (%) Naturalness	SUS (%) Intelligibility
Nanayakkara et al. (2018)	70	70
Tacosi (2023)	84.00	78.2
Sinhala VITS (Proposed)	85.83	82.34

Conclusion

- First Sinhala VITS-based TTS system.
- Achieved state-of-the-art results:
 - Intelligibility 85.8% (SUS)
 - Naturalness 83.54% (MOS)
- Outperforms prior Sinhala TTS approaches.
- Establishes a benchmark for future research.
- Future work: multilingual pretraining, speaker adaptation, dataset expansion.

Acknowledgement

Thanks to the UCSC Language Technology Lab, especially Dr. A.R. Weerasinghe, for their valuable guidance.