MODELING INTRA-WORD CODE-SWITCHING FOR KARELIAN ASR

Irina Kipyatkova, Kseniia Kiseleva, Mikhail Dolgushin, and Ildar Kagirov

St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS)

{kipyatkova, kiseleva.k, dolgushin.m, kagirov}@iias.spb.su

The aim of the research was to improve the accuracy of Karelian-Russian code-switching (CS) speech recognition, with special attention to intra-word CS phenomena.

The phenomenon of intra-word CS consists in morphological adaptation of Russian words to the Karelian language by the borrowing of a Russian word base and the addition of Karelian affixes. For example, a speaker can add Karelian affix 'an' to the Russian word 'училищ' ('college') to convert a word in an accusative case resulting in 'училищал' ('učiliščan' in Latin

Karelian Speech Data

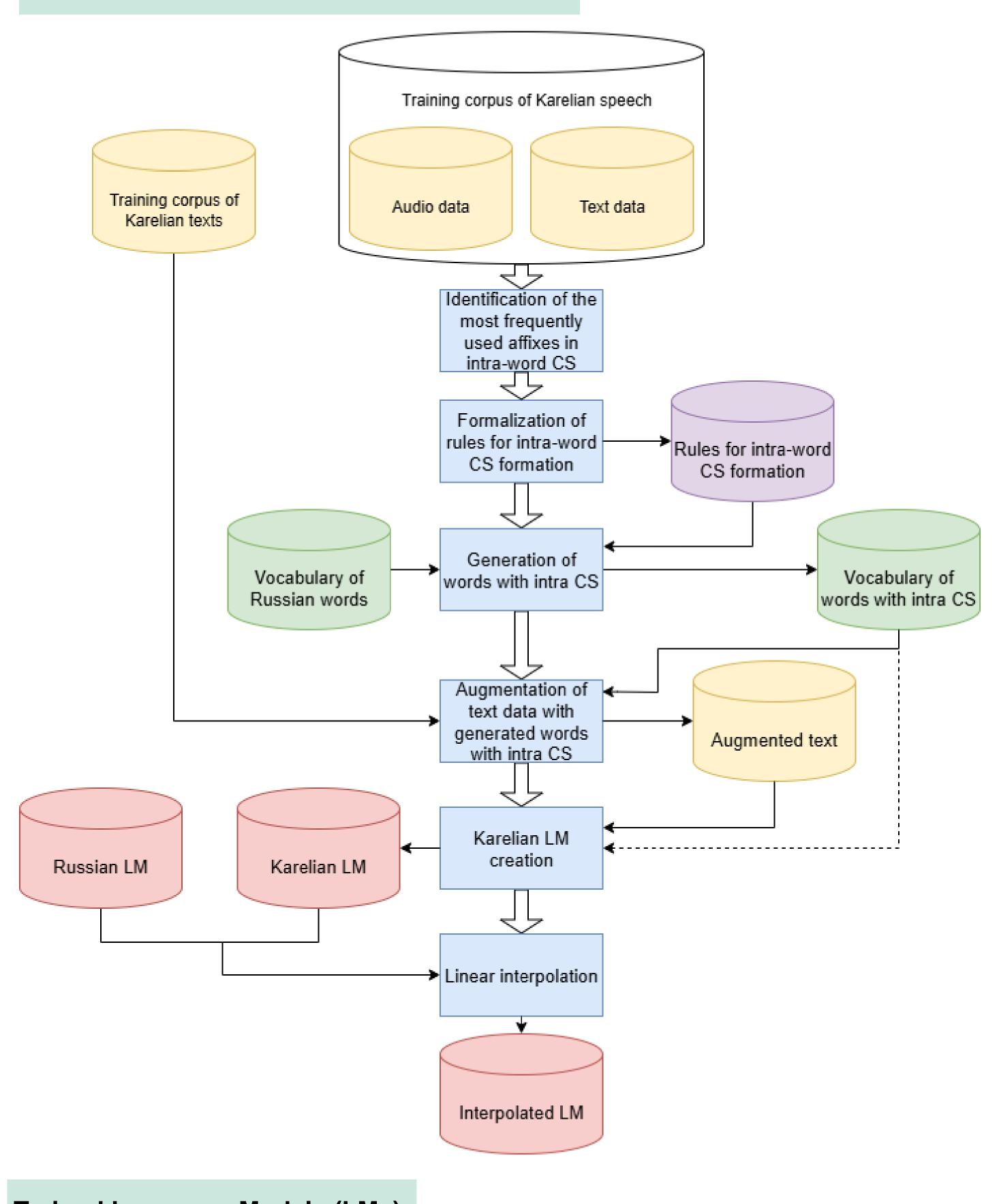
	Value				
Corpus features	AnKaS	KarRusCoS			
Type of Speech	Mostly formal (radio broadcasts)	Spontaneous			
Speakers	17 (7 male, 10 female)	41 (16 male, 24 female)			
Duration	4.5h	3 h			
Utterances	4385	3012			
Word occurrences	32037	22355			
Unique words	9117	7091			
Code-switching rate	1%	28%			
Intra-word code-switching rate	<1%	6%			
Training/development/test ratio	8:	1:1			

Examples of the Developed Rules for Generating Words with the Intra-Word CS

- 1. Nouns:
- a. formation of the inessive singular:
- (1) if the word is polysyllabic and ends in a diphthong, add *ies* to the stem (κ apeлия $\rightarrow \kappa$ apeл**ies** (κ arel**ies**));
- (2) in other cases, if the word ends in a soft consonant, add the ending is to the stem ($ovepedb \rightarrow ovepedis$
- (3) in other cases, add the ending as to the stem $(sopod \rightarrow sopodas)$.
- 2. Adjectives:
- a. formation of the partitive singular:
- (1) add the ending *oidu* to the stem (автобусный → автобусн**оіdu** (avtobusn**oidu**)).
- 3. Verbs: a. inflect the word into an imperative form;
- b. if the imperative ends in a consonant, add *i* to the word in an imperative form;
- c. for the reflexive verbs, drop the ending c_b (s') or c_s (s'a);
- d. formation of the present tense 1st person singular:
- (1) if the word in imperative form ends in u(i), add ending $mmo(\delta eperu \rightarrow \delta eperu mmo(beregimmo))$;
- (2) in other case, if the word in imperative form ends in \ddot{u} (j) add ending $\ddot{c}emmo$ ($co6upa\ddot{u} \rightarrow co6upa\ddot{u}\dot{c}emmo$ (sobirajč**emmo**)).

In total, 33 rules for nouns, 6 rules for adjectives, and 17 rules for verbs were formulated

Karelian Text Data


Parameter	Value
Volume	5M word occurrences
Content	Publications and periodicals in Livvi-Karelian, Livvi-Karelian part of VepKar
Vocabulary size (the number of words with frequency of appearance at least 2)	143,5 K words

An Example of the Sentence Augmentation

(I remember how he also brought wild strawberries in a birch-bark basket)

The Proposed Language Modeling Approach

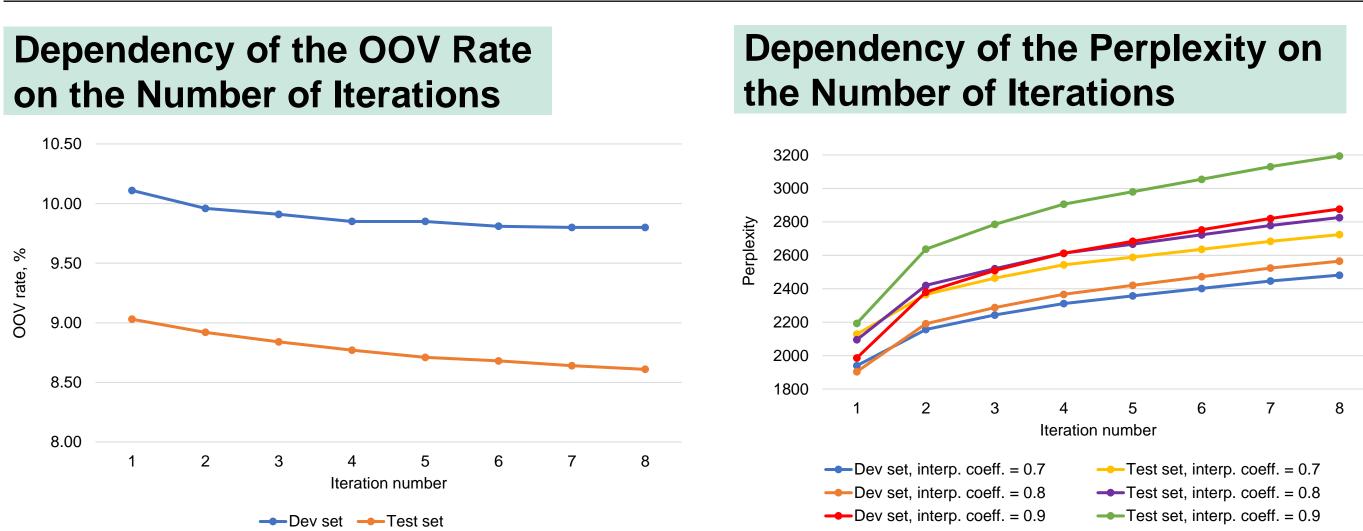
Trained Language Models (LMs)

LM1 - A LM trained solely on the original Karelian texts;

LM2 - A LM1 linearly interpolated with the Russian LM;

LM3 - A LM trained on the original Karelian texts with the entire vocabulary interpolated with the Russian LM;

LM4 - A LM trained on the augmented Karelian texts (comprising only words that occurred in the augmented text), linearly interpolated with the Russian LM;

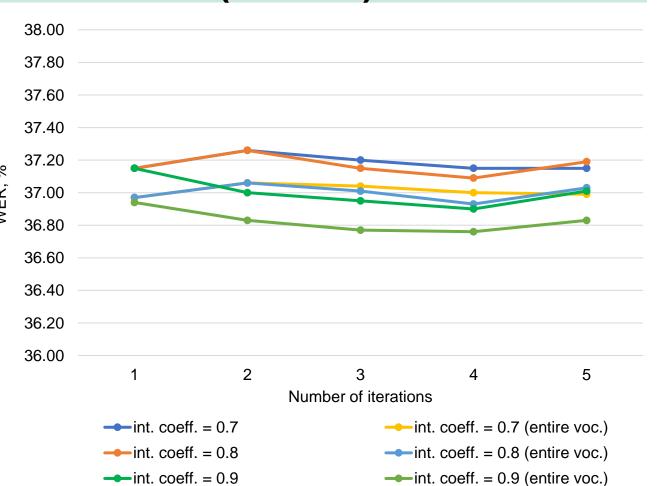

LM5 - A LM trained on augmented Karelian texts with the entire vocabulary linearly interpolated with the Russian LM

Characteristics of the Trained LMs

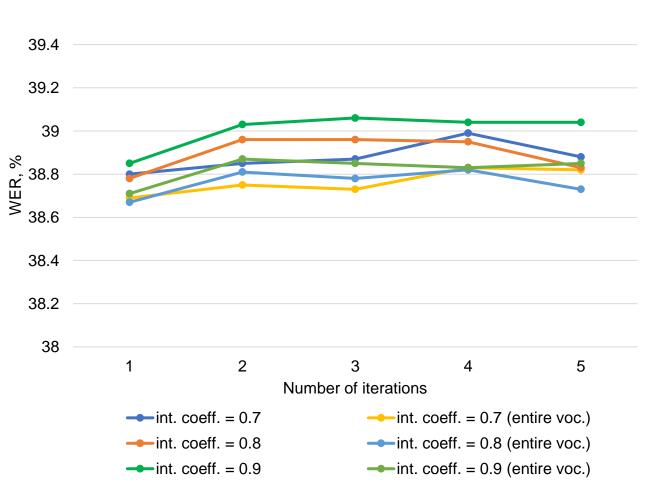
LM	Training text	Vocabulary	Interpolation with Russian LM	
LM1	Original texts	Words from the original texts	No	
LM2	Original texts	Words from the original texts	Yes	
LM3	Original texts	Entire vocabulary	Yes	
LM4	Augmented texts	Words from the augmented text	Yes	
LM5	Augmented texts	Entire vocabulary	Yes	

Perplexities and OOV Rates of Created LMs

	Vocabulary size, K	Dev set			Test set				
LM		OOV rate	Perplexity			OOV rate	Perplexity		
LM1	143	21.53	1476.18			20.88		1530.97	
			Interpolation coefficients				Interpolation coefficients		icients
			0.7	0.8	0.9	•	0.7	0.8	0.9
LM2	287	11.28	1753.6	1728.0	1812.7	9.93	1972.7	1947.5	2047.4
LM3	851	7.67	2518.3	2480.6	2596.1	7.04	2618.3	2584.2	2712.3
LM4	309	10.11	1939.8	1904.0	1986.4	9.03	2128.8	2095.2	2193.3
LM5	851	7.67	2465.9	2418.8	2518.9	7.04	2572.5	2529.8	2643.6
		-							



Experimental Results of Karelian Speech Recognition


Wav2Vec 2.0 Large Uralic VoxPopuli v2 was fine-tuned for 10K steps, with a batch size of 8 and 4 gradient accumulation steps.

LM -	WER, %						
LIVI	Dev set				Test set		
Without LM	41.47 46.38						
LM1	41.19			44.00			
	Inte	rpolation coefficion	ents	Interpolation coefficients		ents	
	0.7	0.8	0.9	0.7	0.8	0.9	
LM2	37.64	37.59	37.55	39.01	39.05	39.13	
LM3	37.19	37.09	37.14	38.73	38.75	38.78	
LM4	37.15	37.15	37.15	38.80	38.78	38.85	
LM5	36.97	36.97	36.94	38.69	38.67	38.71	
LM4 (4 iterations)	37.15	37.09	36.90	38.99	38.95	39.04	
LM5 (4 iterations)	37.00	36.93	36.76	38.83	38.82	38.83	

Dependency of WER on Number of Interactions (Dev set)

Dependency of WER on Number of Interactions (Test set)

Acknowledgments. This research was funded by the Russian Science Foundation, grant number 24-21-00276, https://rscf.ru/en/project/24-21-00276/